Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35.101
1.
Zebrafish ; 21(2): 223-230, 2024 Apr.
Article En | MEDLINE | ID: mdl-38621217

Obesity is a public health concern resulting in a variety of health complications, including heart disease and insulin resistance. Estrogens have been associated with a reduced risk of obesity, but this relationship remains incompletely understood. We assessed the role of 17ß-estradiol (E2) in mitigating complications associated with obesity by supplementing E2 in the diets of overfed zebrafish. We report that dietary E2 supplementation protects against weight gain and modulates de novo cholesterol synthesis in a sex-specific manner. Our studies lead us to propose a model in which E2 regulates hmgcr expression independently of unsaturated fat consumption. These data can be used to develop sex-specific treatments for obesity-related health conditions.


Fats, Unsaturated , Zebrafish , Male , Female , Animals , Zebrafish/metabolism , Fats, Unsaturated/metabolism , Estradiol/pharmacology , Estradiol/metabolism , Estrogens/metabolism , Obesity/etiology , Cholesterol/metabolism , Dietary Supplements
2.
Se Pu ; 42(4): 333-344, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38566422

17ß-Estradiol (E2), an important endocrine hormone in the mammalian body, participates in the regulation of the physiological functions of the reproductive system, mammary glands, bone, and cardiovascular system, among others. Paradoxically, despite the physiological actions of endogenous E2 (0.2-1.0 nmol/L), numerous clinical and experimental studies have demonstrated that high-dose E2 treatment can cause tumor regression and exert pro-apoptotic actions in multiple cell types; however, the underlying mechanism remains undescribed. In particular, little information of the cellular processes responding to the lethality of E2 is available. In the present study, we attempted to characterize the cellular processes responding to high-dose (µmol/L) E2 treatment using quantitative phosphoproteomics to obtain a better understanding of the regulatory mechanism of E2-induced cell death. First, the cell phenotype induced by high-dose E2 was determined by performing Cell Counting Kit-8 assay (CCK8), cell cytotoxicity analysis by trypan blue staining, and microscopic imaging on HeLa cells treated with 1-10 µmol/L E2 or dimethyl sulfoxide (DMSO) for 1-3 d. E2 inhibited cell proliferation and induced cell death in a dose- and time-dependent manner. Compared with the DMSO-treated HeLa cells, the cells treated with 5 µmol/L E2 for 2 d demonstrated >74% growth inhibition and approximately 50% cell death. Thus, these cells were used for quantitative phosphoproteomic analysis. Next, a solid-phase extraction (SPE)-based immobilized titanium ion affinity chromatography (Ti4+-IMAC) phosphopeptide-enrichment method coupled with data-independent acquisition (DIA)-based quantitative proteomics was employed for the in-depth screening of high-dose E2-regulated phosphorylation sites to investigate the intracellular processes responding to high-dose E2 treatment. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified over 10000 phosphorylation sites regulated by E2 and DMSO in HeLa cells. In comparison with the DMSO-treated cells, the cells treated with 5 µmol/L E2 showed 537 upregulated phosphorylation sites and 387 downregulated phosphorylation sites, with a threshold of p<0.01 and |log2(fold change)|≥1. A total of 924 phosphorylation sites on 599 proteins were significantly regulated by high-dose E2, and these sites were subjected to enrichment analysis. In addition, 453 differently regulated phosphorylation sites on 325 proteins were identified only in the E2- or DMSO-treated cell samples. These phosphorylation sites may be phosphorylated or dephosphorylated in response to high-dose E2 stimulation and were subjected to parallel enrichment analyses. Taken together, 1218 phosphorylation sites on 741 proteins were significantly regulated by high-dose E2 treatment. The functional phosphoproteins in these two groups were then analyzed using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) to determine the biological processes in which they participate and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Consistent with the cell-phenotype data, cell cycle-related proteins were highly enriched in the two groups of E2-regulated phosphoproteins (p<0.05), indicating that high-dose E2 treatment can regulate cell proliferation. In addition, E2-regulated phosphoproteins were highly enriched in the cellular processes of ribosome biogenesis, nucleocytoplasmic transport, and messenger ribonucleic acid (mRNA) processing/splicing (p<0.05), indicating that the activation of these processes may contribute to high-dose E2-induced cell death. These results further confirm that high-dose E2 treatment inhibits protein translation and induces cell death. Furthermore, the significant upregulation of multiple phosphorylation sites associated with epidermal growth factor receptor (EGFR) and mitogen-activated protein kinases (MAPKs) MAPK1, MAPK4, and MAPK14 by high-dose E2 indicates that the EGFR and MAPK signaling pathways are likely involved in the regulation of E2-induced cell death. These phosphorylation sites likely play vital roles in E2-induced cell death in HeLa cells. Overall, our phosphoproteomic data could be a valuable resource for uncovering the regulatory mechanisms of E2 in the micromolar range.


Dimethyl Sulfoxide , Tandem Mass Spectrometry , Animals , Humans , Chromatography, Liquid , HeLa Cells , Estradiol/pharmacology , Phosphoproteins/chemistry , Phosphoproteins/metabolism , ErbB Receptors/metabolism , Phosphorylation , Mammals/metabolism
3.
Endocr Res ; 49(2): 106-116, 2024.
Article En | MEDLINE | ID: mdl-38597376

BACKGROUND: Phytoestrogens have been praised for their beneficial health effects, whereas synthetic xenoestrogens have been connected to ailments. AIMS: To ascertain whether the toxicities of natural and synthetic estrogens differ, we examined the potent phytoestrogen 8-prenylnaringenin (8-PN), the common synthetic xenoestrogen tartrazine, and the physiological estrogen 17ß-estradiol (E2). METHODS: These three compounds were tested for cytotoxicity, cell proliferation and genotoxicity in human HepG2 and rat H4IIE hepatoma cells. RESULTS: All three estrogens elicited cytotoxicity at high concentrations in both cell lines. They also inhibited cell proliferation, with E2 being the most effective. They all tended to increase micronuclei formation. CONCLUSION: Natural estrogens were no less toxic than a synthetic one.


Cell Proliferation , Estradiol , Flavanones , Tartrazine , Humans , Animals , Rats , Estradiol/pharmacology , Flavanones/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Tartrazine/pharmacology , Carcinoma, Hepatocellular , Liver Neoplasms/chemically induced , Hep G2 Cells , Estrogens/pharmacology , Estradiol Congeners/pharmacology , Phytoestrogens/pharmacology
4.
BMC Biol ; 22(1): 77, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589878

BACKGROUND: Ten percent of the female population suffers from congenital abnormalities of the vagina, uterus, or oviducts, with severe consequences for reproductive and psychological health. Yet, the underlying causes of most of these malformations remain largely unknown. ADGRA3 (GPR125) is involved in WNT signaling and planar cell polarity, mechanisms vital to female reproductive tract development. Although ADGRA3 is a well-established spermatogonial stem cell marker, its role within the female urogenital system remains unclear. RESULTS: In this study, we found Adgra3 to be expressed throughout the murine female urogenital system, with higher expression pre-puberty than after sexual maturation. We generated a global Adgra3-/- mouse line and observed imperforate vagina in 44% of Adgra3-/- females, resulting in distension of the reproductive tract and infertility. Ovarian morphology, plasma estradiol, ovarian Cyp19a1, and vaginal estrogen receptor α (Esr1) expression were unaffected. However, compared to controls, a significantly lower bone mineral density was found in Adgra3-/- mice. Whereas vaginal opening in mice is an estrogen-dependent process, 17ß-estradiol treatment failed to induce vaginal canalization in Adgra3-/- mice. Furthermore, a marked reduction in vaginal and ovarian progesterone receptor expression was observed concomitant with an upregulation of apoptotic regulators Bcl2, Bid, and Bmf in adult Adgra3-/- females with a closed vagina. CONCLUSIONS: Our collective results shed new insights into the complex mechanisms by which the adhesion receptor ADGRA3 regulates distal vaginal tissue remodeling during vaginal canalization via altered sex hormone responsiveness and balance in apoptotic regulators. This highlights the potential of ADGRA3 as a target in diagnostic screening and/or therapy for obstructive vaginal malformations in humans.


Estrogens , Vagina , Humans , Animals , Mice , Female , Incidence , Vagina/abnormalities , Estrogens/metabolism , Uterus/metabolism , Estradiol/pharmacology
5.
J Biochem Mol Toxicol ; 38(4): e23697, 2024 Apr.
Article En | MEDLINE | ID: mdl-38578078

Genistein, an isoflavone has the potential to mimic, augment, or dysregulate the steroid hormone production pathways. We hypothesized that genistein affects the granulosa cell (GCs) functions through a series of biochemical, molecular, and genomic cascades. The present study was conducted to evaluate the impact of genistein exposure on GCs viability, apoptosis, and steroidogenesis. The present study involved 3/5 days of exposure to genistein on GCs collected from abattoir-derived ovine ovaries at doses of 0, 1, 10, 25, 50, and 100 µM. The harvested GCs were used for growth, cytotoxicity, and gene expression studies related to apoptosis, growth, and steroidogenesis. We observed that genistein had both stimulatory at 10 and 25 µM levels as well as inhibitory effects at 50 and 100 µM levels on the growth and proliferation of GCs. Genistein significantly decreased the levels of 17ß-estradiol at higher exposure (50 and 100 µM), whereas the progesterone level increased significantly as the genistein exposure increased. Additionally, genistein could also alter the mRNA expression of the steroidogenic receptor, enzymes, proteins, and growth-related genes suggesting that genistein could potentially alter the steroidogenic pathways. We conclude that genistein can interfere with cell survival and steroidogenesis by exhibiting a dose-dependent biphasic response on the viability, growth-related parameters, and the synthesis of 17ß-estradiol in the cultured GCs.


Genistein , Isoflavones , Female , Sheep , Animals , Genistein/pharmacology , Progesterone/metabolism , Granulosa Cells/metabolism , Estradiol/pharmacology , Estradiol/metabolism , Isoflavones/pharmacology , Sheep, Domestic/metabolism , Cells, Cultured
6.
Eur J Drug Metab Pharmacokinet ; 49(3): 343-353, 2024 May.
Article En | MEDLINE | ID: mdl-38472634

BACKGROUND AND OBJECTIVE: In vitro glucuronidation of 17ß-estradiol (estradiol) is often performed to assess the role of uridine 5'-diphospho-glucuronosyltransferase 1A1 (UGT1A1) in xenobiotic/drug metabolism. The objective of this study was to determine the effects of four commonly used organic solvents [i.e., dimethyl sulfoxide (DMSO), methanol, ethanol, and acetonitrile] on the glucuronidation kinetics of estradiol, which can be glucuronidated at C3 and C17 positions. METHODS: The impacts of organic solvents on estradiol glucuronidation were determined by using expressed UGT enzymes and liver microsomes from both human and animals. RESULTS: In human liver microsomes (HLM), methanol, ethanol, and acetonitrile significantly altered estradiol glucuronidation kinetics with increased Vmax (up to 2.6-fold) and CLmax (up to 2.8-fold) values. Altered estradiol glucuronidation in HLM was deduced to be attributed to the enhanced metabolic activities of UGT1A1 and UGT2B7, whose activities differ at the two glucuronidation positions. The effects of organic solvents on estradiol glucuronidation were glucuronidation position-, isozyme-, and solvent-specific. Furthermore, both ethanol and acetonitrile have a greater tendency to modify the glucuronidation activity of estradiol in animal liver microsomes. CONCLUSION: Organic solvents such as methanol, ethanol, and acetonitrile showed great potential in adjusting the glucuronidation of estradiol. DMSO is the most suitable solvent due to its minimal influence on estradiol glucuronidation. Researchers should be cautious in selecting appropriate solvents to get accurate results when assessing the metabolism of a new chemical entity.


Dimethyl Sulfoxide , Estradiol , Ethanol , Glucuronides , Glucuronosyltransferase , Microsomes, Liver , Solvents , Microsomes, Liver/metabolism , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Estradiol/metabolism , Estradiol/pharmacology , Glucuronosyltransferase/metabolism , Humans , Solvents/pharmacology , Animals , Kinetics , Ethanol/metabolism , Ethanol/pharmacology , Glucuronides/metabolism , Dimethyl Sulfoxide/pharmacology , Methanol/pharmacology , Methanol/metabolism , Acetonitriles/pharmacology , Acetonitriles/metabolism
7.
Gen Comp Endocrinol ; 351: 114482, 2024 May 15.
Article En | MEDLINE | ID: mdl-38432348

In black porgy (Acanthopagrus schlegelii), the brain-pituitary-testis (Gnrh-Gths-Dmrt1) axis plays a vital role in male fate determination and maintenance, and then inhibiting female development in further (puberty). However, the feedback of gonadal hormones on regulating brain signaling remains unclear. In this study, we conducted short-term sex steroid treatment and surgery of gonadectomy to evaluate the feedback regulation between the gonads and the brain. The qPCR results show that male phase had the highest gths transcripts; treatment with estradiol-17ß (E2) or 17α-methyltestosterone (MT) resulted in the increased pituitary lhb transcripts. After surgery, apart from gnrh1, there is no difference in brain signaling genes between gonadectomy and sham fish. In the diencephalon/mesencephalon transcriptome, de novo assembly generated 283,528 unigenes; however, only 443 (0.16%) genes showed differentially expressed between sham and gonadectomy fish. In the present study, we found that exogenous sex steroids affect the gths transcription; this feedback control is related to the gonadal stage. Furthermore, gonadectomy may not affect gene expression of brain signaling (Gnrh-Gths axis). Our results support the communication between ovotestis and brain signaling (Gnrh-Gths-testicular Dmrt1) for the male fate.


Perciformes , Sex Determination Processes , Animals , Female , Male , Sexual Maturation , Gonads/metabolism , Perciformes/metabolism , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , Estradiol/pharmacology , Estradiol/metabolism , Fishes/metabolism , Gonadal Steroid Hormones/metabolism , Brain/metabolism , Gene Expression
8.
Theriogenology ; 220: 35-42, 2024 May.
Article En | MEDLINE | ID: mdl-38471389

Estrogens have proven to be effective in bovine estrus induction protocols. Considering the extensive use of these products in large-scale estrus synchronization, the primary objective of the present study was to assess their effects on pregnancy rate (PR) using a meta-analysis approach. A total of 797 papers were screened from three major databases (PubMed, Web of Science, Scopus). Sixty-one studies were eligible for inclusion in the meta-analysis. The pregnancy status (success or failure) at 30 days post-insemination was considered as the effect size data. The odds ratios (OR) of PR were evaluated by considering the effects of estrogens in groups with or without estrogen intervention. The impact of estrogen (including factors such as type, dose, and time of administration) and animal characteristics (such as breed, type, and parity) was taken into account when assessing the effectiveness of estrogen response as PR. The results showed an OR of 1.25 (95% CI: 1.15-1.36; P = 0.000) for PR in animals that received estrogen compared to cattle that did not receive estrogen. Estradiol benzoate (OR = 1.3) and estradiol cypionate (OR = 1.2), with doses ranging from 1 to 3 mg (OR = 1.13-1.7), significantly increased the OR of PR. In terms of PR, beef cattle exhibited a higher odds ratio (OR = 1.4; P = 0.000) compared to dairy cattle (OR = 1.1; P = 0.09). The administration of estrogens in the estrus synchronization protocol significantly improved PR in both artificial insemination (OR = 1.2; P = 0.000) and embryo transfer (OR = 1.3; P = 0.033) programs. In summary, incorporating estrogens into estrus induction protocols led to an enhancement of the OR of PR among cattle.


Estrogens , Progesterone , Female , Pregnancy , Cattle , Animals , Estrogens/pharmacology , Pregnancy Rate , Progesterone/pharmacology , Estradiol/pharmacology , Estrus/physiology , Estrus Synchronization/methods , Insemination, Artificial/veterinary , Insemination, Artificial/methods , Dinoprost/pharmacology , Gonadotropin-Releasing Hormone/pharmacology
9.
Theriogenology ; 220: 77-83, 2024 May.
Article En | MEDLINE | ID: mdl-38490112

The present study evaluated follicular and endocrine dynamics during ReBreed21, a reproductive strategy that allows resynchronization of ovulation every 21 days in Bos indicus (Nelore) heifers. A synchronized estrous cycle was induced using a standard timed ovulation protocol (d -10: P4 implant inserted + 2 mg estradiol benzoate; d -2: P4 removed+ 0.5 mg cloprostenol + 0.6 mg estradiol cypionate + 200 IU equine chorionic gonadotropin (eCG); d0: 8.4 µg buserelin) without AI to ensure nonpregnancy in heifers. Day of GnRH was designated d0 of estrous cycle. On d12, heifers (n = 80) were randomized into three experimental groups: (1) ReBreed21 (n = 28) d12 P4 device inserted, d19 P4 device withdrawal plus 200 IU eCG, and d21 8.4 µg buserelin (GnRH); (2) ReBreed21+G (n = 26) same as ReBreed21 plus GnRH (16.8 µg) treatment on d12; and (3) Control (n = 26) no treatment. ReBreed21+G increased two-fold (62.9%; 18/26) percentage of heifers with synchronized follicular wave emergence compared to Control (34.6%; 9/26) whereas ReBreed21 (53.6%; 15/28) was intermediate. The ReBreeed21 groups (eCG on d19) increased (P < 0.01) follicular growth between d19 and d21 in ReBreed21 (2.3 ± 0.2 mm) and ReBreed21+G (3.4 ± 0.2 mm) compared with Control (1.2 ± 0.3 mm), resulting in greater (P < 0.01) follicle diameter on d21 for ReBreed21 (10.7 ± 0.4 mm) and ReBreed21+G (10.8 ± 0.4 mm) compared with Control (9.1 ± 0.5 mm). Structural luteolysis was similar among groups (P = 0.51), although the average day when P4 was <1 ng/mL was later (P < 0.01) for ReBreed21 (20.5 ± 0.2) and ReBreed21+G (20.7 ± 0.2) compared to Control (19.2 ± 0.4). Overall ovulation at the end of the estrous cycle was increased (P = 0.03) for ReBreed21 groups (83.3%; 45/54) compared with Control (57.7%; 15/26). Synchronized ovulation on day 22-23 was greater (P < 0.01) for ReBreed21 (78.6%; 22/28) and ReBreed21+G (76.9%; 20/26) compared with Control (30.8%; 8/26). Thus, the ReBreed21 resynchronization program produced acceptable endocrine and follicular dynamics, including synchronized ovulation at the end of the protocol in nonpregnant heifers providing good rationale for testing the fertility and practical implementation of this protocol under field conditions.


Buserelin , Estrus Synchronization , Animals , Cattle , Female , Buserelin/pharmacology , Estradiol/pharmacology , Estrus Synchronization/methods , Gonadotropins, Equine/pharmacology , Horses , Insemination, Artificial/veterinary , Insemination, Artificial/methods , Ovarian Follicle , Ovary , Ovulation , Progesterone/pharmacology
10.
Horm Mol Biol Clin Investig ; 45(1): 1-15, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38507353

OBJECTIVES: Studies suggest that both genomic and nongenomic pathways are involved in mediating the salutary effects of steroids following traumatic brain injury (TBI). This study investigated the nongenomic effects of 17ß-estradiol (E2) mediated by the PI3K/p-Akt pathway after TBI. METHODS: Ovariectomized rats were apportioned to E2, E2-BSA (E2 conjugated to bovine serum albumin), G1 [G-protein-coupled estrogen receptor agonist (GPER)] or their vehicle was injected following TBI, whereas ICI (classical estrogen receptor antagonist), G15 (GPER antagonist), ICI + G15, and their vehicles were injected before the induction of TBI and injection of drugs. Diffuse TBI was induced by the Marmarou model. Evans blue (EBC, 5 h), brain water contents (BWC), histopathological changes, and brain PI3K and p-Akt protein expressions were measured 24 h after TBI. The veterinary comma scale (VCS) was assessed before and at different times after TBI. RESULTS: The results showed a reduction in BWC and EBC and increased VCS in the E2, E2-BSA, and G1 groups. Also, E2, E2-BSA, and G1 reduced brain edema, inflammation, and apoptosis. The ICI and G15 inhibited the beneficial effects of E2, E2-BSA, and G1 on these parameters. All drugs, following TBI, prevented the reduction of brain PI3K/p-Akt expression. The individual or combined use of ICI and G15 eliminated the beneficial effects of E2, E2-BSA, and G1 on PI3K/p-Akt expressions. CONCLUSIONS: These findings indicated that PI3K/p-Akt pathway plays a critical role in mediating the salutary effects of estradiol on histopathological changes and neurological outcomes following TBI, suggesting that GPER and classic ERs are involved in regulating the expression of PI3K/p-Akt.


Brain Injuries, Traumatic , Neuroprotective Agents , Serum Albumin, Bovine , Rats , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Estrogens/pharmacology , Estradiol/pharmacology , Estradiol/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Receptors, G-Protein-Coupled
11.
PLoS One ; 19(3): e0298184, 2024.
Article En | MEDLINE | ID: mdl-38547301

ß-catenin is an important regulator of malignant progression. 17ß-Estradiol (E2), an important sex hormone in women, promotes the growth and metastasis of triple-negative breast cancer (TNBC). However, whether ß-catenin is involved in E2-induced metastasis of TNBC remains unknown. In this study, we show that E2 induces the proliferation, migration, invasion, and metastasis of TNBC cells. E2 induces ß-catenin protein expression and nuclear translocation, thereby regulating the expression of target genes such as Cyclin D1 and MMP-9. The inhibition of ß-catenin reversed the E2-induced cell malignant behaviors. Additionally, E2 activated Calpain by increasing intracellular Ca2+ levels and reducing calpastatin levels. When Calpain was inhibited, E2 did not induce the proliferation, migration, invasion, or metastasis of TNBC cells. In addition, E2 promoted translocation of YAP into the nucleus by inhibiting its phosphorylation. Calpain inhibition reversed the E2-induced YAP dephosphorylation. Inhibition of YAP transcriptional activity reversed the effects of E2 on the proliferation, migration, invasion, and ß-catenin of TNBC cells. In conclusion, we demonstrated that E2 induced metastasis-related behaviors in TNBC cells and this effect was mediated through the Calpain/YAP/ß-catenin signaling pathway.


Triple Negative Breast Neoplasms , beta Catenin , Female , Humans , beta Catenin/metabolism , Triple Negative Breast Neoplasms/pathology , Calpain/metabolism , Cell Line, Tumor , Signal Transduction , Estradiol/pharmacology , Cell Proliferation
12.
Toxicol In Vitro ; 97: 105803, 2024 May.
Article En | MEDLINE | ID: mdl-38431060

Dexamethasone (DEX) is a synthetic glucocorticoid widely used as pharmaceutical and usually exists in effluents with varying degrees of concentrations. In this study, cultivated Brain, ovary and testis cells from Arabian Sea bream, Acanthopagrus arabicus, were treated by DEX at concentrations of 0, 0.3, 3.0, 30.0 and 300.0 µg/ml for 48 h. The aromatase activity and steroid (17-ß-estradiol (E2), progesterone (P) and testosterone (T)) production by cells were measured at 12, 24 and 48 h of the experiment. The results showed that the sensitivity of cultivated ovarian, testicular and brain cells to DEX increased dose dependently. DEX was potent inhibitor of aromatase activity at specially 30.0 and 300.0 µg/ml in the cultivated ovarian and testicular cells at different sampling time. On the other hand, DEX was found to stimulate the aromatase activity of fish brain. DEX also decreased E2, P and T production by cultivated ovarian and testicular cells during the experiment. While, DEX caused an increase in the production of E2 and P by brain cells, which seems logical considering the stimulating effect of this drug on brain aromatase activity. In conclusion, results highlight that DEX is able to change the activity of aromatase, and disrupt the biosynthesis of estrogens and thus affect reproduction in fish.


Sea Bream , Male , Female , Animals , Sea Bream/metabolism , Aromatase/metabolism , Indian Ocean , Gonads , Estradiol/pharmacology , Steroids , Brain/metabolism , Cell Culture Techniques , Dexamethasone/toxicity
13.
Reprod Domest Anim ; 59(3): e14553, 2024 Mar.
Article En | MEDLINE | ID: mdl-38501644

This study evaluated the efficacy of the administration of different doses of equine chorionic gonadotropin (eCG; 0 IU, 200 IU, or 300 IU) at the time of the progesterone device removal in 2-year-old Nelore (Bos indicus) heifers synchronized for fixed-timed artificial insemination (FTAI). On day 0 (D0), a total of 398 heifers received 2 mg of oestradiol benzoate i.m., 0.53 mg of cloprostenol i.m., and an eight-day previously used (second use) intravaginal device containing 1 g of progesterone (P4). Eight days later (D8), simultaneous with the P4 device removal, 0.5 mg of oestradiol cypionate i.m. and 0.53 mg of cloprostenol i.m. were administered. At the same time, heifers were randomly assigned to receive one of the following treatments: G-0 IU (n = 141; no eCG treatment), G-200 IU (n = 132; treated with 200 IU of eCG), and G-300 IU (n = 125; treated with 300 IU of eCG). FTAI was performed 48 h after the P4 device removal (D10). Ultrasonographic evaluations were performed at D0, D10, and D17. Heifers were scanned to measure the size of the largest follicle (LF), the presence, number, and size of the corpus luteum (CL), and the ovulation rate. Subsequently, at D40, the heifers underwent scanning to determine the pregnancy rate and identify any twin pregnancies. Additionally, at D70, scans were performed to assess pregnancy loss (PG). Data were analysed by orthogonal contrasts [C1 (eCG effect): control x (200 IU + 300 IU) and C2 (eCG dose effect): 200 IU × 300 IU]. On D0, CL presence was similar between the groups [G-0 IU = 65.2% (92/141), G-200 IU = 55.3% (73/132), and G-300 IU = 63.2% (79/125); p = .16]. No interactions between the presence of CL on D0 and eCG treatment were found for any of the variables (p > .05). The diameter of the LF at FTAI (D10) was not influenced by eCG treatment (p = .22) or eCG dose (p = .18). However, treatment with eCG increased the diameter of the CL at D17 (G-0 IU = 15.7 ± 0.3 mmb , G-200 IU = 16.6 ± 0.2 mma , and G-300 IU = 16.6 ± 0.3 mma ; p = .001), regardless of the dose used (p = .94). The ovulation rate was higher in heifers treated with eCG [G-0 IU = 79.4%b (112/141), G-200 IU = 90.2%a (119/132), and G-300 IU = 93.6%a (117/125); p = .002], but there was no effect of eCG dose (p = .36). Pregnancy per AI (P/AI) on D40 [G-0 IU = 32.6%b (46/141), G-200 IU = 42.4%a (56/132), and G-300 IU = 42.4%a (53/125); P = 0.05] and D70 [G-0 IU = 29.1%b (41/141), G-200 IU = 40.9%a (54/132), and G-300 IU = 40.8%a (51/125); p = .02] were higher on heifers that received eCG; however, no dose effect was observed for P/AI on D40 (p = .89) nor D70 (p = .98). Pregnancy loss between D40 and D70 tended to reduce (p = .07) in eCG-treated heifers without dose effect (p = .91). Heifers with CL at D0 presented a greater follicle diameter (LF) on D10 (With CL = 11.2 ± 0.2 mm and Without CL = 10.2 ± 0.2 mm; p = .05), CL diameter on D17 (With CL = 15.8 ± 0.03 mm and Without CL = 11.8 ± 0.6 mm; p = .01), and ovulation rate [With CL = 95.5% (233/244) and Without CL = 74.7% (115/154); p = .01]. However, no difference in pregnancy rate at D40 (p = .52) and D70 (p = .84) was found. In conclusion, eCG treatment increases ovulation and pregnancy rates of heifers submitted to a FTAI protocol. Furthermore, eCG treatment increases the diameter of the CL after FTAI and reduces pregnancy losses. No dose effect was observed, suggesting Nelore (Bos indicus) heifers respond to 200 IU of eCG treatment for FTAI.


Cattle Diseases , Horse Diseases , Pregnancy , Cattle , Animals , Female , Horses , Progesterone/pharmacology , Abortion, Veterinary , Ovulation , Estradiol/pharmacology , Cloprostenol/pharmacology , Insemination, Artificial/veterinary , Insemination, Artificial/methods , Estrus Synchronization/methods
14.
J Nanobiotechnology ; 22(1): 122, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38504208

Endocrine therapy is standard for hormone receptor-positive (HR+) breast cancer treatment. However, current strategies targeting estrogen signaling pay little attention to estradiol metabolism in the liver and is usually challenged by treatment failure. In a previous study, we demonstrated that the natural compound naringenin (NAR) inhibited HR+ breast cancer growth by activating estrogen sulfotransferase (EST) expression in the liver. Nevertheless, the poor water solubility, low bio-barrier permeability, and non-specific distribution limited its clinical application, particularly for oral administration. Here, a novel nano endocrine drug NAR-cell penetrating peptide-galactose nanoparticles (NCG) is reported. We demonstrated that NCG presented specific liver targeting and increased intestinal barrier permeability in both cell and zebrafish xenotransplantation models. Furthermore, NCG showed liver targeting and enterohepatic circulation in mouse breast cancer xenografts following oral administration. Notably, the cancer inhibition efficacy of NCG was superior to that of both NAR and the positive control tamoxifen, and was accompanied by increased hepatic EST expression and reduced estradiol levels in the liver, blood, and tumor tissue. Moreover, few side effects were observed after NCG treatment. Our findings reveal NCG as a promising candidate for endocrine therapy and highlight hepatic EST targeting as a novel therapeutic strategy for HR+ breast cancer.


Breast Neoplasms , Flavanones , Nanoparticles , Humans , Mice , Animals , Female , Breast Neoplasms/pathology , Zebrafish/metabolism , Receptors, Estrogen/metabolism , Estrogens/metabolism , Estrogens/therapeutic use , Tamoxifen/pharmacology , Estradiol/pharmacology , Liver/metabolism
15.
J Pharmacol Sci ; 155(1): 1-13, 2024 May.
Article En | MEDLINE | ID: mdl-38553133

BACKGROUND: Gallic acid (GA) is an organic compound with phenolic properties that occurs naturally and can be found in Guizhi Fuling capsules, showcasing a wide range of biological functionalities. PURPOSE: The objective of this study was to examine the influence of GA on endometrial hyperplasia (EH) and elucidate its underlying mechanism. METHODS: Initially, the induction of EH was achieved by administering estradiol to mice via continuous subcutaneous injection for a duration of 21 days. Concurrently, GA treatment was administered, and subsequently, the uterine tissue structure was assessed using hematoxylin and eosin (H&E) staining. Following this, the proliferation of human endometrial cells treated by GA was determined utilizing the CCK-8 method. Furthermore, network pharmacology and single-cell-RNA-seq data were employed to identify the target of GA action. In addition, we will employ immunofluorescence (IF), immunohistochemistry (IHC), flow cytometry, western blot and RT-qPCR methodologies to investigate the impact of GA on the expression level of cyclin D1, PI3K, p-PI3K, AKT, p-AKT. RESULTS: GA treatment ameliorated histopathological alterations in the uterus and suppress proliferation. Estradiol stimulation can activate the PI3K/AKT pathway, leading to up-regulation of cyclin D1 expression, whereas GA treatment results in down-regulation of its expression. CONCLUSIONS: The expression of cyclin D1 is down-regulated by GA through the inhibition of the PI3K/AKT pathway, effectively mitigating estradiol-induced EH in mice.


Endometrial Hyperplasia , Signal Transduction , Female , Humans , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Cell Proliferation , Phosphatidylinositol 3-Kinases/metabolism , Endometrial Hyperplasia/drug therapy , Down-Regulation , Cyclin D1/genetics , Cyclin D1/metabolism , Estradiol/pharmacology
16.
Int J Mol Sci ; 25(6)2024 Mar 16.
Article En | MEDLINE | ID: mdl-38542355

Breast cancer brain metastasis (BCBM) is a challenging condition with limited treatment options and poor prognosis. Understanding the interactions between tumor cells and the blood-brain barrier (BBB) is critical for developing novel therapeutic strategies. One promising target is estrogen receptor ß (ERß), which promotes the expression of key tight junction proteins, sealing the BBB and reducing its permeability. In this study, we investigated the effects of 17ß-estradiol (E2) and the selective ERß agonist diarylpropionitrile (DPN) on endothelial and cancer cells. Western blot analysis revealed the expression patterns of ERs in these cell lines, and estrogen treatment upregulated claudin-5 expression in brain endothelial cells. Using in vitro models of the BBB, we found that DPN treatment significantly increased BBB tightness about suppressed BBB transmigration activity of representative Her2-positive (BT-474) and triple-negative (MDA-MB-231) breast cancer cell lines. However, the efficacy of DPN treatment decreased when cancer cells were pre-differentiated in the presence of E2. Our results support ERß as a potential target for the prevention and treatment of BCBM and suggest that targeted vector-based approaches may be effective for future preventive and therapeutic implications.


Brain Neoplasms , Breast Neoplasms , Humans , Female , Blood-Brain Barrier/metabolism , Estrogens/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Estrogen Receptor beta/metabolism , Endothelial Cells/metabolism , Brain/metabolism , Estradiol/pharmacology , Estradiol/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/prevention & control , Brain Neoplasms/metabolism , MCF-7 Cells , Estrogen Receptor alpha/metabolism
17.
J Appl Physiol (1985) ; 136(3): 592-605, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38299221

Regular exercise has numerous health benefits, but the human population displays significant variability in exercise participation. Rodent models, such as voluntary wheel running (VWR) in rats, can provide insight into the underlying mechanisms of exercise behavior and its regulation. In this study, we focused on the role of estrogen on VWR in female rats. Female rats run more than males, and we aimed to determine to what extent running levels in females were regulated by estrogen signaling. The running behavior of rats (duration, speed, and total distance run) was measured under normal physiological conditions, ovariectomy (OVX), and estrogen replacement in an OVX background. Results show cyclic variations in running linked to the estrous cycle. Ovariectomy markedly reduced running and eliminated the cyclic pattern. Estrogen replacement through estradiol benzoate (EB) injections and osmotic minipumps reinstated running activity to pre-OVX levels and restored the cyclic pattern. Importantly, individual differences and ranking are preserved such that high versus low runners before OVX remain high and low runners after treatment. Further analysis revealed that individual variation in running distance was primarily caused by rats running different speeds, but rats also varied in running duration. However, it is noteworthy that this model also displays features distinct from estrogen-driven running behavior under physiological conditions, notably a delayed onset and a broader duration of running activity. Collectively, this estrogen causality VWR model presents a unique opportunity to investigate sex-specific mechanisms that control voluntary physical activity.NEW & NOTEWORTHY This study investigates estrogen's role in voluntary wheel running (VWR) behavior in female rats. Female rats exhibit greater running than males, with estrogen signaling regulating this activity. The estrous cycle influences running, whereas ovariectomy reduces it, and estrogen replacement restores it, maintaining individual differences under all conditions. Both running speed and duration contribute to VWR variations. These findings emphasize individual estrogen regulation in female exercise and provide an estrogen replacement animal model for investigating neurobiological underpinnings that drive voluntary exercise behavior.


Individuality , Motor Activity , Male , Humans , Rats , Animals , Female , Motor Activity/physiology , Estrogens/pharmacology , Estradiol/pharmacology , Ovariectomy
18.
Neuroscience ; 541: 118-132, 2024 Mar 16.
Article En | MEDLINE | ID: mdl-38301739

Aggression is a social behavior that is critical for survival and reproduction. In adults, circulating gonadal hormones, such as androgens, act on neural circuits to modulate aggressive interactions, especially in reproductive contexts. In many species, individuals also demonstrate aggression before reaching gonadal maturation. Adult male song sparrows, Melospiza melodia, breed seasonally but maintain territories year-round. Juvenile (hatch-year) males aggressively compete for territory ownership during their first winter when circulating testosterone is low. Here, we characterized the relationship between the steroid milieu and aggressive behavior in free-living juvenile male song sparrows in winter. We investigated the effect of a 10 min simulated territorial intrusion (STI) on behavior and steroid levels in blood, 10 microdissected brain regions, and four peripheral tissues (liver, pectoral muscle, adrenal glands, and testes). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we quantified 12 steroids: pregnenolone, progesterone, corticosterone, 11-dehydrocorticosterone, dehydroepiandrosterone, androstenedione, testosterone, 5α-dihydrotestosterone, 17ß-estradiol, 17α-estradiol, estrone, and estriol. We found that juvenile males are robustly aggressive, like adult males. An STI increases progesterone and corticosterone levels in blood and brain and increases 11-dehydrocorticosterone levels in blood only. Pregnenolone, androgens, and estrogens are generally non-detectable and are not affected by an STI. In peripheral tissues, steroid concentrations are very high in the adrenals. These data suggest that adrenal steroids, such as progesterone and corticosterone, might promote juvenile aggression and that juvenile and adult songbirds might rely on distinct neuroendocrine mechanisms to support similar aggressive behaviors.


Songbirds , Humans , Animals , Male , Songbirds/physiology , Corticosterone , Progesterone/pharmacology , Chromatography, Liquid , Tandem Mass Spectrometry , Testosterone , Androgens , Aggression/physiology , Estradiol/pharmacology , Pregnenolone/pharmacology
19.
Theriogenology ; 219: 75-85, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38402700

Endometritis is a disease caused by a postpartum bacterial infection with a poor prognosis that primarily affects dairy cows. Three-dimensional organoids have been used as a model for endometritis, because they exhibit a structure comparable to that of the endometrium, demonstrating both expansibility and hormone responsiveness. These characteristics render them an ideal platform for in vitro investigations of endometrial diseases. Estradiol (E2) is an endogenous steroid hormone with demonstrated anti-inflammatory properties, and the objective of this study was to determine the mechanism by which E2 modulates the inflammatory response and the Wnt signal transduction pathway in bovine endometrial epithelial cells and organoids following E. coli infection. We present the techniques for isolating and culturing primary bovine endometrial epithelial cells (BEECs), and producing endometrial organoids. For the experiments, the endometrial epithelial cells and organoids were infected with E. coli for 1 h, followed by incubation with E2 for 12 h. The mRNA and protein expressions of the inflammation-related genes, IL-1ß, IL-6, TLR4, and NF-κB, as well as the Wnt pathway-related genes, Wnt4, ß-catenin, c-Myc, and CyclinD1, were assessed using real-time quantitative-PCR and western blotting, respectively. The CCK8 viable cell counting assay was utilized to determine the optimal concentration of the Wnt inhibitor, IWR-1. The mRNA and protein expression of Wnt pathway-related genes was assessed following IWR-1 treatment, while the expression levels of proliferation-associated genes (Ki67, PCNA) and barrier repair genes (occludin, claudin, and Zo-1) in BEECs and organoids were evaluated after E2 treatment. The results of this study show that mRNA expression of the inflammatory genes, IL-1ß, TLR4, and NF-κB (P < 0.05) decreased in BEECs following E2 treatment compared to the E. coli group. The protein expression of the IL-1ß, IL-6, TLR4 and NF-κB genes was also inhibited (P < 0.05). Similar results were observed in tests on the organoids. Our findings demonstrate that E2 significantly upregulates the expression of Wnt-related genes, including ß-catenin and c-Myc, while concurrently downregulating the expression of GSK3ß (P < 0.05). Next, we treated E. coli-infected BEECs and organoids with the Wnt inhibitor, IWR-1. Compared with E. coli and E. coli + E2, the expression of mRNA and protein from Wnt 4, ß-catenin, and CyclinD1 in E. coli + E2 and E. coli + IWR-1 was down-regulated (P < 0.05). The expression of the proliferation genes, Ki67, PCNA, and the tight junction genes, occludin, claudin1, and Zo-1, in organoids was significantly higher than that in BEECs (P < 0.05). In summary, we found strong potential for E2 mitigation of the E. coli-induced inflammatory response in BEECs and organoids, through activation of the Wnt pathway. In addition, the proliferation and repair capacity of organoids was much higher than that of BEECs.


Cattle Diseases , Endometritis , Escherichia coli Infections , Female , Cattle , Animals , Endometritis/veterinary , NF-kappa B/metabolism , Wnt Signaling Pathway , Interleukin-6/metabolism , Escherichia coli/metabolism , Estradiol/pharmacology , Estradiol/metabolism , Toll-Like Receptor 4/metabolism , beta Catenin , Ki-67 Antigen/metabolism , Occludin/metabolism , Occludin/pharmacology , Proliferating Cell Nuclear Antigen/metabolism , Endometrium/metabolism , Epithelial Cells/metabolism , Escherichia coli Infections/veterinary , Escherichia coli Infections/metabolism , RNA, Messenger/metabolism , Cattle Diseases/metabolism
20.
Psychopharmacology (Berl) ; 241(5): 1037-1063, 2024 May.
Article En | MEDLINE | ID: mdl-38407638

RATIONALE: Animal studies suggest that the so-called "female" hormone estrogen enhances spatial navigation and memory. This contradicts the observation that males generally out-perform females in spatial navigation and tasks involving spatial memory. A closer look at the vast number of studies actually reveals that performance differences are not so clear. OBJECTIVES: To help clarify the unclear performance differences between men and women and the role of estrogen, we attempted to isolate organizational from activational effects of estrogen on spatial navigation and memory. METHODS: In a double-blind, placebo-controlled study, we tested the effects of orally administered estradiol valerate (E2V) in healthy, young women in their low-hormone menstrual cycle phase, compared to healthy, young men. Participants performed several first-person, environmentally rich, 3-D computer games inspired by spatial navigation and memory paradigms in animal research. RESULTS: We found navigation behavior suggesting that sex effects dominated any E2 effects with men performing better with allocentric strategies and women with egocentric strategies. Increased E2 levels did not lead to general improvements in spatial ability in either sex but to behavioral changes reflecting navigation flexibility. CONCLUSION: Estrogen-driven differences in spatial cognition might be better characterized on a spectrum of navigation flexibility rather than by categorical performance measures or skills.


Spatial Navigation , Male , Animals , Humans , Female , Estrogens/pharmacology , Estradiol/pharmacology , Spatial Memory
...